It was shown above that the energy flux of the wave is conserved. This is related to
the neglect of the wave attenuation. A weak attenuation can be introduced in Eq. {(3.2) in
analogy to hydrodynamics. This fact and the consideration that the dispersion equation for
waves in a low-viscosity fluid is described by {(3.3) makes it possible to determine the
total change in amplitude related to ray focusing and wave attenuation.
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The thermal-capillary instability of the layer of a liquid with a free surface has been
studied, on which a surface-active agent has been applied [1, 2]. The problem of the initia-
tion of thermal-capillary convection in the presence of a surface-active agent has been
solved (3, 4] in the two-layer formulation with a consideration of the hydrodynamic and
thermal processes on both sides of the separation surface. In all cases, the problem was
examined under the assumption of a plane undeformed interface. It is known that interface
deformation can have a significant effect on the excitation of thermal-capillary convection
[5-71.
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pressure py in the m-th liquid is reckoned from the hydrostatic pressure; an
ningd/dxy; is the surface gradient.
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y=0: pr—p, + [Ga(p™ — 1) + W] h — (b + i) Ky, =
= 2(vy — 7"y,

0 (v1x + hvyy) — (vax + ihvay) — ikMr(Tl — r_*f—ﬁh) — kBT +

+ A+ i0)Kvie = 0; vy = Vss, — (A + i0) 2

== Vyy = Usy,

T, =T, =08 wl Ty =0, (h— Dg)T = ik,

Afra
R 2 . o N - @ - f_ .,
where W = ca,/ni1v;; Mr = aba,/n,v, is the analog to the Maragoni numb B = dglga1/n,vi;
— — — f.,
K= 0||1/p1a1r|2, and DS = Do/vl.

It is easy to understand that the parameter K is proportional to the ra of the mass
of surface-active agent particles concentrated on the interface to the mass of the first
fluid. Hereafter we will set this parameter to zero.

] o - e _ PR . . PR — . o —_ 21 £ — \

By introducing perturbation for the flow functions vy g‘pr' and Viy = —ikyy (m = 1, 2)

13
and eliminating pp {m i, 2) and ', we write the resultant boundary problem as

d
(A + i0) DYm = — cmD*m, — (A + i©) T'm — thApmpm = TTZ DT,
y=1 ‘P1=¢1=T1=05 y=—ua ‘P2=‘P;=T2:‘O1
¥=0: 9 — 0 1A+ i) (1 —p ) =Bk (L — ) py + ik [Ga(p™ — 1) +
‘ + WK h =

” 2 g2 . : s k*B ’
7 {91+ Ep) — (2 +kwz)—skMr(Tl—Hmh)+%Dsk2w1=0,

V= =y = — i B 77, = S e =0,

e interface for a monotonic instabilitv can be determined in an andlosous manner :
he interface for a monotonic instability can be determined in an analogous manner:

2 ;
Mr (F)— 85k” (1 + %a) (xD, - D,) (nB, - B, + B/2kD,) L
— _ g8 a1 —1 211" 2.1
® [Pr(E,— £)— 85 (D, + D) (F,—n'F,)] [Ga (o ~1)+Wk} Vvl
Dl=i~D_£2_.B_SIC1-k. __SC
? 2 ! i 2“‘—___v
Here S Sy S2— 2 82 —K%a®
i §i—#c, 83— K%, . F, 't &
i . 2 2= 2 22 =2 » 2= 3 IR,
S, (s2 k) S, (83 —#%a®)’ S5 —k S3 — K
S;=shk S,=shka; C, =chk; C,=chka.
From Eq. (2.1) it can be seen that the presence of the surface-active agent always leads to a
displacement of the neutral curve to the side of the larger Mr, which is determined by the
combination B/Dg. Because the quantity Dg is usually small for real surface-active agents,
this displacement is significant, even for moderate values of B. We note, that the position
of the break of the neutral curve, as determined by a zero denominator, does not change in
the presence of a surface-active agent.
As k + », Eq. {2.1) transforms to the formula found in [3] without considering the inter-
face deformation. TFor long-wavelength: perturbations, the distortion of the interface has a
defined value. For k = 0, the threshold for exciting convection is described by the
expression

25 Ga 8 (1 +1a -+ BajaD,) (1 + xa)’a
(1+a) (1 —ne®) ’

~
(o]
N
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3. We now study oscillatory type instabilities. The oscillatory neutral curves were
calculated numerically by the Runge—Kutta method. We will examine a model system: v = 0.5,
x =x=a=Pr=W=1, and p = 0.999. The choice of system parameters is dictated by the
following considerations. In the absence of deformation and a surface-active agent, it is
unstable relative to oscillatory perturbations when heated from below ("longitudinal"
oscillations), and this instability mode is the only one. It is natural to expect that
the effect of deforming the interface will be strongest for values of p close to unity.

Initially we examine the case of heating from below. If there is no surface-active
agent (B = 0) but if the interface isdeformed, the oscillatory instability is conserved for
wave numbers larger than the critical value; in the long wavelength region, the monotonic
perturbation is the most critical. The neutral curves 1 and 2, computed for Ga = 107, are
shown in Fig. 1. (The monotonic curves are solid; the oscillatory curves are dashed.) The
dispersion curve 1 for the oscillatory mode of instability is shown in Fig. 2.

The appearance of a surface-active agent (B # 0), as in the case of no interface defor-
mation [3], splits the monotonic neutral curve in two: a monotonic curve with a threshold
value of Mr, in accordance with Eq. (2.2), which grows rapidly with increasing B, and an
oscillatory curve, for which the dependence on B is much weaker. Figure 1 shows the mono-
tonic and oscillatory neutral curves 3 and 4 for B = 0.1 and the oscillatory neutral curve
5 for B = 5. The dependence of the frequency w on the wave number k is shown in Fig. 2
(B = 0.1 and 5 for curves 2 and 3).

When heating is from above, deformation of the interface leads to a new type of oscilla-
tory instability ('"transverse" oscillations). The neutral curve has the shape of a sack
(see Fig. 3a, Ga = 10*, B = 0, 5, and 15 for curves 1-3); that is, two values of sMr corres-
pond to any value of the wave number in the region k < k; (B). The corresponding dispersion
curves are shown in Fig. 3b (the curve numbers are the same as in Fig. 3a). As B increases,
the width of the instability region for a wave number k,; decreases monotonically, and the
threshold value Mr increases.

4., Now we examine a system of real media: air—water for Pr = 0.758, n = 0.0182, v =
15.077, » = 0.0369, x = 138.42, and p = 0.00121. Let a = 1. By assuming the possibility
of changing the value of g (under conditions of reduced gravity), we will examine Ga and W
as independent parameters. We set W = 10° (which corresponds to each layer being 3 mm
thick) and vary the parameter Ga.

The neutral curves for heating from below are shown in Fig. 4 (Ga = 0) and Fig. 5 (Ga =
10). 1In both figures the curves 1-4 correspond to B =0, 1, 5, and 10. In the absence of a
surface-active agent (B = 0), the instability has a monotonic character; if the values of
Ga are not too large, the neutral curve has two minima in the short and long wavelength re-
gions. For B # 0, the neutral curves split into a monotonic curve and an oscillatory curve;
the monotonic mode of the instability rapidly stabilizes. (In the figures the monotonic
neutral curve is not shown, because it lies at larger values of Mr.)
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As B increases, the critical Mr increases for both the long and short wavelength minima
However, the short-wavelength ("longitudinal')} oscillations stabilize much faster than the
long-wavelength (''transverse') ones. Therefore a situation is possible where for values

B < Bx the most critical instability is the short wavelength one, but for B > Bx it is the
long wavelength mode (Fig. 5). The oscillation frequency increases monotonically as B in-
creases (Fig. 6, curves 1-3 for B = 1, 5, and 10).

When the air—water system is heated from above, a long-wavelength oscillatory in-
stability occurs, which is closely related to the interface deformation, as in the model
system discussed in paragraph 3. The neutral curves are shown in Fig. 7, and the dependence
of frequency on the wave number is shown in Fig. 8. In both figures, curves 1-3 correspond
to B =0, 5, and 15. Now we turn attention to the fact that for this system (as opposed
to the model situation) the neutral curve for the oscillatory instability does not have the
form of a sack.

As B increases, the threshold value of Mr and the oscillation frequency
increase.

5. As can be seen from the interface condition for normal stresses (and also the re-
sults from paragraph 4), when W >> 1, the interface deformation is substantial only in
the long wavelength region (k << 1). In this case, the conditions for exciting an oscilla-
tion instability for heating from below can be investigated analytically.

First we examine the wave numbers k < W™1/2.

If we expand the solution and the critical
values of Mr and w? in a series in k, we find to zero order that

1 2 9
T (f ir :&a)_ ") {'3— na® (1 + na) [Ga(p~* — 1) + Wk +

4+ 2aB (1 + na@®) + 2D (1 + 4na + 6na® + 4nad + n%“)};

(5.1)

2,4
a‘k
o =

2
1+ 4na + 6na® | na® 1 n’at {T'T (Galp™ = 1)+ Wk} — D.2(1 + ”“3)} — 2

(5.2)
For comparison, we present the expression which determines the threshold value of Mr for the
monotonic mode:
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Analysis of these expressions shows that in the range of a substantial oscillatory in-
stability (w? > 0) Mr < Mrp.

In order to "join" Egs. (5.1)-(5.3) with formulas obtained [3] for long-wavelength
perturbations with no interface deformation, we must investigate an intermediate region
k ~ W/*%, in which we find

80(1--na) (1+xe)® K 5 4
s xPra®(ya®—1) k' +ElS (5.4)

Mr =

-0 = BB [Ly + (L, + L) (B + KISY ], (5.5)

where

1~‘na2
ya® —1

2
g 120(1+a) ;S=sign(1;"“ );
; xa® — 1

* wpPrnd®

2 {—
L1=‘;—5‘[(ﬂ+d")+ﬂ(1+“)1_:;z

. L _160(t+n) (1 —%) (1—na’),
Lt A nNa (14 xa) W ?

_ 2aPr(14-14?) {P 1 — %yad)+53a (x — ya®)+ 42ya? (1—xra?)] +
Ly = — ity (o nay (P 1 (L — %2%) +53 (¢ — ) + 42y ( )
1(1 — va®) (1 — yna?) ]}

+ (1 + xa) [4(1 — qva) — =2 10 (1 —na?)
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If S > 0 for this system (as for systems studied in paragraph 4) then the oscillatory neutral
curve is continuous and has a maximum at k = k,. For S < 0, the oscillatory neutral curve has
a discontinuity at k = k,.

The long-wavelength asymptotic approximations of Egs. (5.4) and (5.5) coincide with the
short-wavelength asymptotic approximations of Egs. (5.1) and (5.2). For W™1/* << k << 1, Egs.
(5.4) and (5.5) transform to the corresponding formulas [3] derived when the interface de-
formation is neglected.
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