
It was shown above that the energy flux of the wave is conserved. This is related to 

the neglect of the wave attenuation. A weak attenuation can be introduced in Eq. ~.~.~:"" ~x in 
.... 1 . . . . . .  J ~  . -  2 _ . _  al,axugy to hydrodynamics. This fact and the uun~xue~atxun that the u~spe~un . . . . . . . . . .  equation for 

1 . ~  J ~ . . . .  2 t  waves in a low-viscosity fxuxu is uesc~xued by (3 ~ .~: makes it possible to determine the 

total change in amplitude related to ray focusing and wave attenuation. 
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,ne Lnerma• ~ .... xn~tau-x-ty of the layer of a liquid with a free surface has ueeu 
_ ~ _  + n a - L ) ~ r d . I L  mLUui~d, Oii which a surface-active agent has ......... [I ~ .......... app• ~j. lue p[ou• of the initia- 
tion of thermal-capillary convection in the presence of a surface-active agent has been 
solved r ~ , xuLmui~t:un consideration of the hydrodynamic and L J, ~J in the two-layer . . . . . . . . . . . . .  with a 

thermal processes on both sides of the separation ~uL• In a•177 cases, the problem was 
_ _z~  _ J  --1 . . . . . .  J . . . . .  examxneu under the assumption of a p-anu unu~foLrneu interface. It is known that interface 

deformation can have a ~• effect on the excitation of uhermal-uapix• convection 
[5-7]. 

Here, the instability of the uqu• of systems containing surface-active agents is 

z.ve~uigaueu with a consideration of the deformation of the interface. The effect of the 
surface-active agent is studied on the monotonic instability ,uoue, and also on osu~•177 ~ ~- - 
modes of various types. Features are explained for exciting a special type of oscillatory 

W 1 1 - t C l l  -,,staulxz-y, is closely ,'elated to the presence of a ~urxaue-actxve agent when the 
interface is deformed. 

-I_-._- I. Let the space between two horizontal solid plates at y = at and y = --a~, over w,xuh 
a temperature difference 8 is maxnuaxnuu, . . . . . . . . . . .  be fxlxuu: ~ - = wit]] two layers of in6niscible viscous 
fluids. The equation of tl]e interface is y = 0 in the state of mechanical equilibriLm~. The 

densities of the media are Pro, the coefficients of dynamic and kinematic viscosity are qm 
tnerma• -- ~ a n d  Vm,  t h e  . . . . .  c o n d u c t i v i t i e s  a r e  •  a . u  t h e  ] ] e a t  t r a n s f e r  c o e f f i c i e n t s  a r e  X m  ("~ = t 

for the upper layer and m = 2 for the lower one). We ass*role that a surface-active agent is 
cunc~1,tLmueu with a surface : .... <~,,a~] concentration F at the interface, m~__ concentration of 
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__- 1 . . . .  1 _ _ r n l _ _  ] . . . .  -1 . . . . .  the surface-active agent is ~,,,a• so that its mo•177 form a "surface gas." ,,~e uupunuenuu 

of the surface tension on the temperature T and the surface-active agent concentration is 

as~tuu linear 

(Y ----- ( ~ o -  o ~ T  - -  c c s F  , 

1. •  

w h e r e  o0 ,  (~, a n d  ~s  a r e  c o n s t a n t s .  

-r__ . , ,  t h e  s t a t e  o f  , n e u n a n - u a -  . . . . . . . . . . . . . . .  ~qu. .zuc• . . . . . . .  t h e  s u r f a c e - a c t i v e  a g e n t  c o n c e n t r a t i o n  i s  c o n -  
m,__ ~hurnm• convection • to a non- stant: F = F0 ~,~ excitation of ..... ~ "~ .... "--'~- ~-- ~---1- 

uniform concentration of the surface-active agent along the interface. The transport equa- 
r o l  t i o n  f o r  e x c i t i n g  a c o n c e n t r a t i o n  ~d t o j  t a k e s  t h e  f o r m  

OF d av x a2rd ( I  ~ ~ . / . 2  
7f  + r~ = Do ax 2 

if adsorption and desorption are ~,ug.uc~uu after :•177177 and if -.m ~.utzuz, • a~,,,.~u 

. . . . . .  inte~-au~, Do planar. "" .... nurxzu,~ua. - = the --- ~ - --" on n e r e  v x is the ~ .......... " component ul v~.uulcy the . . . . .  =--- and is the 

su~zaue diffusion coefficient of the surface-active agent. Because a unit ~ur,au~ area of 

the interface has a mass F0. the stress balance at the interface, considering (I.I). can be 

written in the form 

a v /  ( ~  

F0 -$F = - -  (P~ - -  p~gh) n~ + (p~ - -  ~ { h )  n~ - -  --E n~ + ( ~ , m - - o ~ , ~ )  n~ - -  

- -  ~ z D ~ T  - -  a , D f  d ,  

(I ~ ..)) 

__1 . . . . . . .  J 
dllu anu w,,eL-~ v i T are the v~.uu• temperature at the interface h is u,,e uispzaceu,~nt of 

the interface; n i is the normal vector; R is the radius of curvature of the surface; and 

Om, i k  = qm(OVm,ltOXk + OVm,k/aX i )  i s  t h e  v i s c o u s  s t r e s s  t e n s o r  o f  t h e  m - t h  l i q u i d ,  t h e  

pressure Pm in the m-th liquid is reckoned from the hydrostatic pressure; and D i = 8/8x i - 

ninkOlOx k is the surface gradient. 

We choose the notation p = Pl/0~, q = ql/q~, v - ~i/~2, ~ = xt/~,, • = •215 and a = 

a2/al. We introduce al, a~l/Vl, veal, p~v~/a,, 8 and F0 as the units of length, time, velo- 

city, pressure, and concentration. The dimensionless gradients of temperature A m and pres- 

sure B m are constant at equilibrium and are A~ = -s/(l + ~a), and A~ = -~/(I + xa), res- 

pectively, where s = 1 for heating from above and s = -I for heating from below; BI = -Ga, 

and B~ = -Ga/0, where Ga = g.a~/v~ is the Galileo nmaber. The linearized convection equa- 

tions for the normalized perturbations of the x and y components of velocity Vmx and Vmy, 

the pressure Pm, and temperature T m (m = I, 2) take the form 

- -  (~. + ion) vmv = - -  e m p ~  + c~.Dvmu, - -  (~. + ion) vmx = - -  i kempm + c m D v ~ x ,  

d m r 
(2. + ioJ) T ~  + A~v ,~  u = >-~ D T m ,  ikum= + vmv = O. 

Here k is the wave nmnber; X + im is the complex decrement; the prime denotes differentiation 
d2/d._~ _ k2 ........ i�9 with respect to the y coordinate; D = y- ; Cl = dl = el = I; c 2 - v 1; d2 _ x , 

1]. kLlll D~::~ s �9 e2 0; and Pr = "VI/XI is the Prandtl ........ 

- - ~ - "  ~ -  - ~ - ' - ' -  = I :  The conditions on the ~u,zd uuuuu~r• are y vl = 0, Ti = 0; y =--a: v 2 = 0 and 

T 2 = 0. On the interface, besides the transport equation for the surface-active agent (I.~7 

and the conditions for the ......... and ........ stresses (L ~ uur,.a- Lm~g~*,t-~. .o7. we have the continuity 

conditions for the velocity vector, the temperature, and the normal heat flow components. 
and also the kinematic relationships, which relate the displacement h of the interface with 
the velocity of the fluids on the separation surface�9 The conditions for deformation of the 

interface due to transport at the plane y - 0 take the form 

3 8 0  



y = 0 :  / h - - P ~  + [ G a ( 9  - ~ -  l )  + W k ~ l h - - ( ~ ,  + io.))K~t- 'v~,= 

2 (v iv  -* , ' -- I] U2y),  

, , ( ,h) ~(Vl= + ikvm)--(v~. + i k v ~ ) - - i k M r  T ,  l-~-d-~ - - i k B F  + 

+ (~, + ira) K v , =  = O; v,= = v~=, - -  (~ + io)) h = v,~ = v ~ ,  

t 

T t - - T ~  s ( i - - •  h, •  i + • ~ = O, (~. - -  D~k ~) F = ikv , . ,  

w h e r e  W = ~ a , / r l ~ v ~ ;  Mr = c t S a , / i l 2 v l  i s  . . . .  . h e  a n a l o g  t o  . . . .  ~ne  M a r a g o n i  n ~ n b e r ;  B - ~ s F 0 a , / q ~ v ~ ;  

K = P~;l,/o~a~;-I=; and D s = D0/v~. 

It is easy to understand that the parasneter K is proportional to the ratio of the mass 

of surface-active agent particles concentrated on the interface to the mass of the first 
-3 11 ~1-3 fluid. Hereafter we w~•177 set ~n• parameter to zero. 

J l _ J .  [ _ _  ~ X  

= -"' a i id  Vmy = - l ~ m  uu = I, a] By introducing perturbation for the flow functions vr: ~ w m 

and - ~ ' - : - - -  _-__ ( _ .  ox e•177177 Pm vm = i, ~)  and F, we write *'r . . . . . . . . . . .  ruSu• boundary problem as 

dm 
(~ + io) Dr = - -  c~D~xpm, - -  ()~ + io)) Tm - -  ikAm~,n = --~ DTm,  

y = t :  % = % = T ~ = 0 ;  y = - - a :  % = ~ = T ~  0, 

y = O: 9 ,  - -  ~-*#~" + [ ( , t ,  + ira) (1 - -  p - * ) - -  3k = (1 - -  -~  ' " ~i )] ~, + ik [Ga(p-*-- i) + 

Here 

+ W k  ~] h = O, 

%=%, ~ = r  h,  T ~ - - T , ,  

s \ k2B , 
~ z ~  h]  + - -  ~, = O, 

)~ - -  Dsk 2 

s(l--• • 

2 .  r n x _ _  . _ _ ~ _ _  ~ _  _ _  a . . . . .  �9 . . . . .  1 . . . . . .  i H e  i n L e t - a c e  for a monotonic " - -  -~--'~-" c a l l  in~tauzzxty be aetelmilled in all alta• ffianner: 

8*k 2 (1 + • (zD 1 + D2) ( ~ I B ,  + B 2 + B/2kDs) 

~ ( k ) =  ~ [ e~  (z~,~ - E,)  - sk ~ ( ~  + ~,~) ( r , - n - ~ r ~ ) ]  [G~ ( ~ - ~ - -  0 + w ~ q - "  

C t . Cs . 
D1=--~-~1, D2=- -~2 ,  B~ 

SIC ~ - -  k $2C 2 - -  ka 
S ~ - - k  2 ; B~ s ~ - - k ~  ~ ; 

1"~ 1X \ / - . •  

E l  
S a - -  kaC, , S~ - -  kaaac 2 l a ~ 

�9 ; 
s ,  2 - k 2' s~ - ~2a2 

S , = s h k ;  S 2 = s h k a ;  C , = c h k ;  C 2 = c h k a .  

Frola Eq. (2.1) it can be seen that the presence of the surface-active agent always leads to a 
J �9 1 ._ uispxacemunt of the ueuLr~ ....... curve to the side of the larger ,.tr, wnlun is determined by the 
_ _ . L  ~" . _  _ �9 _ . _  n / r ' ~  L l l t ~  U ~ ' U . d . L - L y  uomu• ~l~s- Because ~'-- quantity D s is ...... "" ...... ~m~-• for tea-- ~ surface-active agents, 
this displacement is significant, even for moderate values of B. We note, that the position 
of the break of the neutral curve, as determined by a zero denominator, does not change in 
the presence of a surface-active agent. 

As k + ~, Eq. (2.1) transforms to .... u,,e formula found in [3] without considering the inter- 
face deformation. For long-wavelength, perturbations, the distortion of the interface has a 
defined value. For k = 0, the threshold for exciting convection is described by the.. 
express ion 

Mr (0) = 
2s~ I Ga 6 (1 + ~la 47 Ba/4Ds) (1 + • 

(1 + ~) (~ - n~ 2) 
k/- . / .  7 
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3. We now study oscillatory type instabilities. The oscillatory neutral curves were 
calculated numerically by the Runge-Kutta method. We will examine a model system: ~ = 0.5, 

= X = a = Pr = W = i, and p = 0.999. The choice of system parameters is dictated by the 
following considerations. In the absence of deformation and a surface-active agent, it is 
unstable relative to oscillatory perturbations when heated from below ("longitudinal" 
oscillations), and this instability mode is the only one. It is natural to expect that 
the effect of deforming the interface will be strongest for values of p close to unity. 

Initially we examine the case of heating from below. If there is no surface-active 
agent (B = 0) but if the interface is deformed, the oscillatory instability is conserved for 
wave numbers larger than the critical value; in the long wavelength region, the monotonic 
perturbation is the most critical. The neutral curves 1 and 2, computed for Ga = 107 , are 
shown in Fig. i. (The monotonic curves are solid; the oscillatory curves are dashed.) The 
dispersion curve 1 for the oscillatory mode of instability is shown in Fig. 2. 

The appearance of a surface-active agent (B # 0), as in the case of no interface defor- 
mation [3], splits the monotonic neutral curve in two: a monotonic curve with a threshold 
value of Mr, in accordance with Eq. (2.2), which grows rapidly with increasing B, and an 
oscillatory curve, for which the dependence on B is much weaker. Figure 1 shows the mono- 
tonic and oscillatory neutral curves 3 and 4 for B = 0.i and the oscillatory neutral curve 
5 for B = 5. The dependence of the frequency m on the wave number k is shown in Fig. 2 

(B = 0.i and 5 for curves 2 and 3). 

When heating is from above, deformation of the interface leads to a new type of oscilla- 
tory instability ("transverse" oscillations). The neutral curve has the shape of a sack 
(see Fig. 3a, Ga = i0 ~, B = O, 5, and 15 for curves 1-3); that is, two values of sMr corres- 
pond to any value of the wave number in the region k < k I (B). The corresponding dispersion 
curves are shown in Fig. 3b (the curve numbers are the same as in Fig. 3a). As B increases, 
the width of the instability region for a wave number k I decreases monotonically, and the 

threshold value Mr increases. 

4. Now we examine a system of real media: air-water for Pr = 0.758, ~ = 0.0182, ~ = 
15.077, ~ = 0.0369, X = 138.42, and p = 0.00121. Let a = i. By assuming the possibility 
of changing the value of g (under conditions of reduced gravity), we will examine Ga and W 
as independent parameters. We set W = 106 (which corresponds to each layer being 3 mm 

thick) and vary the parameter Ga. 

The neutral curves for heating from below are shown in Fig. 4 (Ga = 0) and Fig ~. 5 (Ga = 
i0). In both figures the curves 1-4 correspond to B = 0, i, 5, and i0. In the absence of a 
surface-active agent (B = 0), the instability has a monotonic character; if the values of 
Ga are not too large, the neutral curve has two minima in the short and long wavelength re- 
gions. For B # 0, the neutral curves split into a monotonic curve and an oscillatory curve; 
the monotonic mode of the instability rapidly stabilizes. (In the figures the monotonic 
neutral curve is not shown, because it lies at larger values of Mr.) 
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As B increases, the critical Mr increases for both the long and short wavelength minima. 
However, the short-wavelength ("longitudinal") oscillations stabilize much faster than the 
long-wavelength ("transverse") ones. Therefore a situation is possible where for values 
B < B* the most critical instability is the short wavelength one, but for B > B, it is the 
long wavelength mode (Fig. 5). The oscillation frequency increases monotonically as B in- 
creases (Fig. 6, curves 1-3 for B = I, 5, and i0). 

When the air-water system is heated from above, a long-wavelength oscillatory in- 
stability occurs, which is closely related to the interface deformation, as in the model 
system discussed in paragraph 3. The neutral curves are shown in Fig. 7, and the dependence 
of frequency on the wave number is shown in Fig. 8. In both figures, curves 1-3 correspond 
to B = 0, 5, and 15. Now we turn attention to the fact that for this system (as opposed 
to the model situation) the neutral curve for the oscillatory instability does not have the 
form of a sack. As B increases, the threshold value of Mr and the oscillation frequency 
increase. 

5. As can be seen from the interface condition for normal stresses (and also the re- 
sults from paragraph 4), when W >> i, the interface deformation is substantial only in 
the long wavelength region (k << i). In this case, the conditions for exciting an oscilla- 
tion instability for heating from below can be investigated analytically. 

First we examine the wave numbers k ~ W-~/2 If we expand the solution and the critical 
values of Mr and ~z in a series in k, we find to zero order that 

M r =  s ( t§215  [-~-~ ~ (i ~ ~ i -  n~/ ~ (1 + ~.) [Ga (p-~ - 1) + wkq + 

+ 2 a B  (i -I- TI az) + 2D~ (1 + 4~qa + 6rla ~ + 4qa 3 + r12a4)l; 

(s .1)  

(o 2 = B lGa(p - t  - -  i) + W k  2] - -  D~2(l + Tie 3) D~. ( 5 . 2  ) 
I ~ 4rla ~ 61qa 2 q- 41qa a -~- ~l~a 4 

For comparison, we present the expression which determines the threshold value of Mr for the 
monotonic mode : 
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M r m  = 
8 ( t  +• 2 r o  B "1 

(5.3) 

Analysis of these expressions shows that in the range of a substantial oscillatory in- 
stability (~2 > O) Mr < Mr m. 

In order to "join" Eqs. (5.1)-(5.3) with formulas obtained [3] for long-wavelength 
perturbations with no interface deformation, we must investigate an intermediate region 
k ~ W-I/4, in which we find 

Mr = s 80(t + ~ a ) ( l  + • 2 k 2 ( 5. 4 ) 
• Pra ~ (%a ~ -- t) ~4 + k~S; 

r = Ba~k ~ [L 1 + (L 2 + L3k 4) (k  ~ + k4,S)-1 ]-1, (5.5) 

where 

120 (t-{-a) t -- ~a2]. (1 - -  ~a2/. 
k4* WPrlla 3 [Xa2--t  ? S = s i g n \ % a 2 t  ],  

L1 = "-~ - O]+a'v)+~](l+a)t--"a2]'t--~la~J ' L 2 =  160(l-F~) ( i - - •  (t--~la~)'na(l+• ' 

i 3 = 
2aPr ( l  -b~la 2) /Pr 63 (-%a-~---- t) ( - l -~a) ' (  [11 (l -- • +53a  (• - %aa)+42%a~(l--• + 

+ ( l + •  2 1 ( 1 - - v a ~ ) ( t - - ~ l a a ) ] }  
lo(1 - , l ~  ~) 
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If S > 0 for t'his system (as for systems studied in paragraph 4) then the oscillatory neutral 
curve is continuous and has a maximum at k = k,. For S < 0, the oscillatory neutral curve has 
a discontinuity at k = k,. 

The long-wavelength asymptotic approximations of Eqs. (5.4) and (5.5) coincide with the 
short-wavelength asymptotic approximations of Eqs. (5.1) and (5.2). For W-i/4 << k << i, Eqs. 
(5.4) and (5.5) transform to the corresponding formulas [3] derived when the interface de- 
formation is neglected. 
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